

Global Support, Global Solutions. CARBIDE - CBN - DIAMOND The Solution for Carbide Tool Manufactures CARBIDE BLANKS Rev. 2

CARBIDE BLANKS

SUMITOMO ELECTRIC GROUP

INTRODUCTION

The Next-Generation Technology To Create Tomorrow's Society

Cemented carbide is the hardest artificial material after CBN and diamond, which is essential as a cutting-tool material to machine automobile parts, a variety of machines, aircraft parts, electric devices, and so on. The demand for carbide cutting tools are not only increasing, but also becoming widely utilized in various fields. Sumitomo Electric started R&D on cemented carbide in 1927, and in the following year, succeeded in developing carbide die for drawing wires and launched the carbide tool business. Ever since, the company have developed new materials(including CBN), various coating grades, and cutting tools of innovative design and functions one after another, helping increase productivity and reduce the machining cost in the machining field. Sumitomo Electric provides not only finished cutting tools but also carbide blanks for tool manufactures, with high quality grades which were developed from our long and abundant experiences. We will strive to exceed our customers' expectations and to contribute to our society.

CONTENTS

INTRODUCTION The Next-Generation Technology To Create Tomorrow's Society

What Is Cemented Carbide? / Applications of Cemented Carbide **Production Process of Cemented Carbide**

Characteristics of Cemented Carbide

<u>P R O D U C T</u>

BLANKS FOR ROUND TOOLS 9)

- 11 Blanks for Round Tools
- 13 Round Rods
- 15 Round Rods with Helical Coolant Holes
- 17 Formed Round Rods

PRODUCT

BLANKS FOR VARIOUS CUTTING TOOLS, 9) WEAR RESISTANT TOOLS, DIES & MOLDS

- 21 Blanks for Various Cutting Tools, Wear Resistant Tools, Dies & Molds
- 22 Grade Map
- 23 Grade Property
- 25 Application of Each Grade
- 26 Producible Blanks for General Cutting Tools. Wear & Impact Resistant Tools
- 27 Blanks for General Cutting Tools
- 28 Blanks for Wear & Impact Resistant Tools
- 29 Blanks for Slitters & Blades
- 30 Blanks for Die & Mold
- 31 Binder-less Carbide Blanks for Lens Forming Mold
- 32 Anti-Corrosive Carbide Blanks
- 33 High Wear Resistant Carbide Blanks (Binder-less Carbide)
- 34 Carbide Saw Tip Blanks
- 35 Property of Saw Tip Carbide
- 36 Description of Saw Tip Blanks
- 37 Available Dimensions for Saw Tip Blanks

What Is Cemented Carbide?

Cemented carbide was invented in Germany in 1923. It is made from mainly WC (the powder combining with tungsten and carbon), and contain molten cobalt as a binder, and also includes TiC (Titanium-carbide) and/or TaC (Tantalum-carbide) as needed. It is an optimal raw material for cutting tool: it has high hardness, high strength at high temperature, so it is used in a high-temperature, high-speed environment thanks to those characteristics.

Cemented Carbide's Micrograph

 Typical Cemented Carbide-Phase 	
	11
	1
	and
Gray: WC, White: Co	
a sale of the state of the	

High wear- resistance	\leftarrow	High hardness (Hv:15GPa)	2 times (than high speed steel)
Low elastic deformation	\leftarrow	High Young's modulus (E:620GPa)	3 times
Low plastic deformation	\leftarrow	High compressive strength (o:5.3GPa)	2 times
Low thermal expansion coefficient	\rightarrow	Linear expansion coefficient $(\alpha:4.9\times10^{-6}dea^{-1})$	1/2 times
High thermal diffusion	\leftarrow	High thermal conductivity (ĸ:0.19cal/cm·sec.°C)	5 times (than high speed steel)
High thermal transformation resistance	\rightarrow	High heat resistance	
High corrosion resistance	\rightarrow	Possible to produce anti-corrosion alloy	

Applications of Cemented Carbide

The above characteristics are utilized in the cutting edges of tools, and die molds. In comparison with common heat-treated steel tools, cemented carbide tools can withstand overwhelming machining speed and have longer tool-life than before, therefore the amount of cemented carbide tools are increasing year on year. Cemented carbide tools are utilized in various different fields, such as manufacturing of car engine, transmission, aircraft engine, generator, construction machine, die mold and other electronic devices.

Production Process of Cemented Carbide

Characteristics of Cemented Carbide

The characteristic of carbide blanks (hardness & TRS) is effected by the amount of metal binder or grain size of cemented carbide (WC). As Co content increases, hardness of cemented carbide decreases, but conversely, TRS increases.

The microstructure by different WC grain

Carbide grades with ultra-micro grain, micro grain and fine grain are commonly used for endmills and drills.

Relation between grain size of WC and hardness or TRS

By using smaller grain size of WC, carbide shows higher hardness and TRS, but fracture toughness becomes lower.

Improvement of TRS by HIP

All of our carbide rods are treated by HIP to eliminate micro pore and improves TRS. (HIP is the process to treat carbide with high temperature and pressure.)

Relation between WC grain size and fracture toughness

Carbide grade with coarse grain is effective for prevention of progress of cracks. It provide protection against chipping of cutting edges.

A long history of reliable performance and quality Blanks for Round Tools

Blanks for Round Tools

Properties of Grade for Round Tools

				Properties									
Class	Grade	ISO Code	Grain Size (µm)	Cobalt Content (wt%)	TRS (GPa)	HRA (HRA)	Hv (HV)	Fracture Toughness (MPa·m ^{1/2})	Young's Modulus (GPa)				
rain	XF1	_	0.2	9.0	4.0	93.5	20.4	5.5	610				
cro G	AFU	—	0.3	8.0	3.8	93.6	19.4	6.0	610				
a Mic	AFO*	—	0.3	10.0	4.1	93.0	18.1	7.3	590				
Ultr	AF1	—	0.3	12.0	4.4	92.5	17.3	8.3	570				
	F0*	_	0.5	5.0	3.6	93.6	20.1	6.7	650				
rain	KH12	—	0.5	10.0	4.0	92.4	17.0	8.2	580				
0 G	KH15	_	0.5	12.0	4.4	92.0	16.3	9.0	580				
Micr	A1	—	0.5	13.0	4.2	91.4	15.6	8.6	560				
	KH26	—	0.4	13.0	4.3	92.0	16.3	9.5	550				
c	H1	K01	0.8	5.0	3.3	93.2	17.7	6.3	660				
Grai	ZF16A*	K10	0.8	6.0	3.5	93.0	17.6	7.5	640				
ine (KH03	K20	0.8	10.0	3.8	91.4	15.2	9.9	580				
LL.	EH10	K10	0.9	6.0	3.4	92.4	17.3	6.5	630				

*Grade only for cutting tools for PCB

Carbide Grade for Endmills

Blanks for Round Tools

Grade Recommendation by Application

Ultra Micro Grain

Grain Size : 0.3µm

KH12 Grain Size : 0.5μm

Fine Grain

Grain Size : 0.8µm

	Application			Work Material										
Grade	Endmill	Drill	Drill 30°helical coolant hole	Soft Steel	General Steel	Hardened Steel	Stainless Steel	Titanium Alloy	Heat Resistant Alloy	Cast iron	Aluminium Alloy	Copper Alloy		
XF1		•		0	0	0	0		0					
AFU				0	0	O								
AF1		•		0	0									
KH26	•			Ø	Ø	0	Ø	Ø	Ø					
VU12				Ø	Ø	0	0	0	Ø					
KIIIZ				Ø	Ø	0	0	0	0	0	0	0		
KH15	•			Ø	Ø	0	0	0	0					
A1	•	•		0	0		0							
H1										Ø	O	Ø		
VUOZ				0	0	0	0	0	0					
KIUJ			•	Ø	Ø	0	0	Ø	Ø	0				
EH10		•				0	0	Ø	Ø	Ø	0	0		

For more information on 30°helical coolant hole blanks, Refer to page 15-16.

	Application		Work Material									
Grade	Reamer	Soft Steel	General Steel	Hardened Steel	Stainless Steel	Titanium Alloy	Heat Resistant Alloy	Cast iron	Aluminium Alloy	Copper Alloy		
A1	•	0	0									
H1	•	0	0	0	0			Ø	Ø	Ø		
EH10	•	0	0	0	0	Ø	Ø	Ø	0	0		

Application of Blanks for PCB Drills

	Fo	rm	Diameter					
Grade	Solid	Composite	Ultra Small Diameter (to ø0.15)	Small Diameter (to ø0.45)	General Diameter (ø0.5 to)			
XF1	•	•	Ø	0				
AFU	•	•		O				
AF0	•	•	0	Ø				
F0	•				O			
ZF16A	•	•		0	0			

• : Standard stocked item

© : Most recommended

O : Recommended

Round Rods

Inventory

We keep round rod stocks of the chart below marked as • to the shorten delivery time.

Stocked Grade

Stocked Item

	Diamet	er (mm)	Lengt	h (mm)				Gra	ade																
Cat. No.	Nominal Diameter	Tolerance	Nominal Length	Tolerance	AFU	AF1	KH26	KH12	KH15	A1	H1	EH10													
AR010310	1.0			+6.0		•																			
AR015310	1.5	+0.3	310			•				•	•	•													
AR020310	2.0	+0.2	510	-0		•					●	•													
AR025310	2.5					•				•	•	•													
AR030310	3.0				•	•		•	•	•	•	•													
AR035310	3.5				•	•		•		•	•	•													
AR040310	4.0				•	•		•			●	•													
AR045310	4.5				•	•		•			●	•													
AR050310	5.0				•	•		•		●	•	•													
AR055310	5.5	+0.5	310	+6.0 -0	•	•		•		•	•	•													
AR060310	6.0				•	•		•			•	•													
AR065310	6.5				•	•		•		•	•	•													
AR070310	7.0				•	•		•		•	•	•													
AR075310	7.5				•	•		•		•	•	•													
AR080310	8.0				•	•	•	•	•	•	•	•													
AR090310	9.0				•	•		•		●	●	•													
AR100310	10.0				•	•	•	•	•	•	•	•													
AR110310	11.0																		•					●	•
AR120310	12.0	+0.6 +0.3	310	+6.0 -0	•	•		•			●	•													
AR130310	13.0																								
AR140310	14.0				٠	•		•			●	•													
AR150310	15.0																								
AR160310	16.0				•	•		•			•	•													
AR170310	17.0																								
AR180310	18.0	+0.7 +0.3	310	+6.0 -0		•				●	●	•													
AR190310	19.0																								
AR200310	20.0				•	•		•			•	•													

Unstocked items are available by order.

The above marked items are semi-standard stock, Please inquire about stock availability and delivery when ordering.

Standards of Round Rods

Availabl	e size	4	size availability	is depending o	n the grade.	Please refer	to the map be	elow.				
Grada	Diameter											
Uraue	5	10	15	20	25	30	3	5				
AF0	ø3											
F0	ø3											
ZF16A	ø3											
XF1		Ø	12									
BL130			ø16	,								
AFU								ø35				
AF1					ø25							
KH26	ø3 — — —		ø16)								
KH12					ø25							
KH15					ø25							
A1								ø35				
H1					ø25							
КН03								ø35				
EH10								ø35				
Length		ø3 to ø25 Dia:	: 10L to 330L		Ø	25 to ø35 Dia	a: 10L to 170)L				

Tolerance

Diameter (mm)									
$1.0 \le D < 3.0$	+0.3 +0.2								
$3.0 \le D \le 8.0$	+0.5 +0.3								
8.0 < D ≤ 15.0	+0.6 +0.3								
15.0 < D ≤ 35.0	+0.7 +0.3								

	Length						
10 ≤ L < 310	L < 310 $\pm 0.5\%$ (Minimum Tolerance: ± 0.1)						
$310 \le L \le 330$	+6.0 -0	- 0.15					

In some cases, this standard is different depending on the grade or diameter.

Round Rods with Helical Coolant Holes

The producible grade is KH12 and KH03.

Although standard length is 310mm or 330mm, another shorter size is available by order.

We can form chamfering and centering over ø5.6mm diameter.

Stepping is unavailable.

*1 Diameter (the Top and Bottom Diameter of Helical Groove)

Round rods with helical coolant hole has helical grooves on the surface. In the right chart, the diameter of top groove and bottom groove are expressed as "top groove diameter" and "bottom groove diameter" respectively.

*2 Form

with Double Helical Oil Holes

*Diameter tolerance of round rods with 15° helical coolant holes is "+0.4/-0".

Round Rods with Helical Coolant Holes

Dimentions

Dim	entior	IS									(mm)
			Diamete	er øD *1		Hole				Producib	le Grade
Helix	Number	Cat. No.	Top	Bottom	Dia	ameter	Hol	e Pitch	Lead		
Angle			Groove	Groove		ød		d	Allowalice	KH12	KH03
		AR1H056XXX	5 5 5	5 2 5	0.71	+0.1	25	0/-03	54.8 to 63.0	_	
		AR1H066XXX	6.55	6.25	0.83	±0.1	2.5	±0.2	65.7 to 75.6	—	
		AR1H076XXX	7.55	7.25	0.95	±0.1	3.3	±0.2	76.7 to 88.2	—	
		AR1H086XXX	8.55	8.25	1.06	±0.1	3.6	±0.2	87.6 to 100.8	—	
		AR1H096XXX	9.55	9.25	1.18	±0.2	4.2	±0.2	98.6 to 113.4	—	
150	2	AR1H106XXX	10.55	10.25	1.30	±0.2	4.6	±0.2	109.6 to 126.0	—	
15	2	AR1H116XXX	11.55	11.25	1.30	±0.2	5.0	±0.2	120.5 to 138.6	—	
		AR1H126XXX	12.55	12.25	1.42	±0.2	5.4	±0.2	131.5 to 151.2	—	
		AR1H136XXX	13.55	13.25	1.54	±0.2	5.7	±0.2	142.4 to 163.8	—	
		AR1H146XXX	14.55	14.25	1.66	±0.2	6.3	±0.2	153.4 to 176.4	—	
		AR1H156XXX	15.55	15.25	1.77	±0.2	6.9	±0.2	164.3 to 189.0	—	
		AK1H166XXX	16.55	16.25	1.89	±0.2	7.5	±0.2	1/5.3 to 201.6		
			5.0	5.5	0.47	±0.05	1.50	0/-0.1	15.7 to 17.0		
			4.0	4.5 5 Z	0.59	+0.05/-0.1	1./	0/-0.2	20.9 to 22.7		
			6.6	63	0.71	±0.1	2.4 2.8	+0.5	31 / to 3/ 0		
			7.6	73	0.05	+0.1	3.0	+0.2	36.6 to 39.7		
		ARHO86XXX	8.6	83	1.06	± 0.1 +0.1	3.2	+0.2	41 9 to 45 4		
		ARH096XXX	9.6	9.3	1.18	+0.2	4.0	+0.2	47.1 to 51.0		
		ARH106XXX	10.6	10.3	1.30	±0.2	4.4	±0.2	52.3 to 56.7		
		ARH116XXX	11.6	11.3	1.30	±0.2	4.4	±0.2	57.5 to 62.4		
30°		ARH126XXX	12.6	12.3	1.42	±0.2	4.8	±0.2	62.8 to 68.1		
For	2	ARH136XXX	13.6	13.3	1.54	±0.2	5.2	±0.2	68.0 to 73.7		
Straight	2	ARH146XXX	14.6	14.3	1.66	±0.2	5.6	±0.2	73.2 to 79.4		
Drills		ARH156XXX	15.6	15.3	1.77	±0.2	6.0	±0.2	78.5 to 85.1		
		ARH166XXX	16.6	16.3	1.89	±0.2	6.4	±0.2	83.7 to 90.7		
		ARH176XXX	17.6	17.3	2.01	±0.2	6.8	±0.2	88.9 to 96.3		—
		ARH176XXX-1			1./5	±0.2	8.5	±0.2		—	
			18.6	18.3	2.13	±0.2	1.2	±0.2	94.1 to 102.0		
					2.00	±0.2	9.2	±0.2			
			19.6	19.3	2.20	±0.2	7.0 0.7	±0.2	99.3 to 107.7		
					2,00	+0.2	8.0	+0.2	104.6.±0		—
		ARH206XXX-1	20.6	20.3	2.00	+0.2	9.9	+0.2	113.4	—	
		ARD036XXX-1	7 /		0.23	±0.05	0.8	-0.1/-0.2	15.7 to 17.0		
		ARD036XXX-2	5.6	5.5	0.35	±0.05	1.2	0/-0.2	15.7 to 17.0		
		ARD046XXX	4.6	4.3	0.35	±0.05	1.2	0/-0.2	20.9 to 22.7		
		ARD056XXX	5.6	5.3	0.47	±0.05	1.5	0/-0.3	26.2 to 28.4		
		ARD066XXX	6.6	6.3	0.47	±0.1	2.0	±0.2	31.4 to 34.0		
30°		ARD076XXX	7.6	7.3	0.59	±0.1	2.0	±0.2	36.6 to 39.7		
_		ARD086XXX	8.6	8.3	0.71	±0.1	2.4	±0.2	41.9 to 45.4		
For	2	ARD096XXX	9.6	9.3	0.83	±0.1	2.8	±0.2	47.1 to 51.0		
Step Drills		ARD106XXX	10.6	10.3	0.95	±0.1	5.2	±0.2	52.3 to 56.7		
			11.6	11.5	0.95	±0.1	5.2	±0.2	57.5 to 62.4		
			12.0	12.5	1.06	±0.1	5.0 Z 6	±0.2	02.8 t0 08.1		
			1/ 6	1/1 7	1 1 2	±0.1 +0.2	2.0	±0.2	73 2 to 70 /		
		ARD156YYY	15.6	15 3	1 30	+0.2	4.0	+0.2	785 to 851		
		ARD166XXX	16.6	16.3	1.42	+0.2	4.8	+0.2	83.7 to 90.7		
		AR4H033XXX-1	1010	.0.5	0,20	±0.05	0.5	±0.05	10.1 to 10.8	_	
42°	2	AR4H033XXX-2	3.3	3.2	0.14	±0.03	0.5	0/-0.1	10.1 to 10.8	—	

Blank: Made-to-order item —mark: Not available

Formed Round Rods

Grades to Be Formed

Diameter	ø3 to ø16	XF1 KH26	ø3 to ø25	AF1 KH12 KH15 H1	ø3 to ø35	AFU A1 KH03 EH10
----------	--------------	-------------	--------------	---------------------------	--------------	---------------------------

٦

Available Size

ć

Length	ø3 to ø25	to 330L	Axial oil hole Straight oil hole
Longth	ø25 to ø35	to 170L	

Formed rods as near net shape are available on request.

Formed Round Rods

Formed Example Producible Measurement : Diameter 3mm to 35mm / Length up to 320mm Taper V-Groove/Point angle Straight oil hole/ axial oil hole **Spot Face** *Maximum length is different by diameter. Through hole: Maximum Length 320L Blind hole: Maximum Length 170L *Minimum diameter: ø0.8 **Multi-step** Flute* (Accommodate for right handed and flute) * Maximum length: 220L We can form We can form helical angle flute, straight flute, and flat face. Other specific shape. Please feel free to contact us. Please contact us about helical flute specifications.

Standard Dimensions

Female Center

Diameter(ø)	øD	ød	L
3.0 to 3.5	1.3	0.8	1.43
3.6 to 6.3	1.5	1.0	1.63
6.4 to 10.0	2.0	1.5	2.23
10.1 to	3.0	2.0	3.87

Male Center

ød
3.0
4.0
5.0
6.0

Chamfer

The various carbide materials developed from abundant experience as a tool manufacture

Blanks for various cutting too wear resistant tools, dies & m

Grade Map

Cermet

For high wear resistant tools

For impact resistant tools

Micro & Ultra micro grain grade

Grade Property (Typical Value)

P10 ST10P 10.5 2.0 9.0 92.1 16.0 P20 ST20E 11.0 2.0 8.5 01.7 15.8	Pa) T 0 8 9
P10 ST10P 10.5 2.0 9.0 92.1 16.0	0 8 9 7
P20 ST20E 11.0 2.0 8.5 01.7 15.8	8 9 z
Parada F20 S120E 11.9 2.0 0.3 91.7 13.0	9 z
P30 A30N 11.6 3.4 11.5 91.0 14.9	z
P40 ST40E 13.2 2.0 11.5 90.4 14.3	5
M10 U10E 12.9 2.0 5.5 92.4 16.9	9
M grade M20 U2 13.2 2.0 8.0 91.5 15.6	6
M40 A40 13.2 1.4 15.0 89.2 12.9	9
For general cutting tools K10 H1 15.1 0.8 5.0 93.2 17.7	7
K10EH1014.90.96.092.417.3	3
K grada K10 G10E 14.8 2.5 6.0 90.9 15.4	4
K grade K20 EH20 14.9 2.5 6.0 91.3 15.8	8
K20 KH03 14.5 0.8 10.0 91.4 15.2	2
K40 KH05 14.2 0.8 13.0 90.4 13.6	6
P10 T1200A 6.7 15.0 91.9 15.6	6
P30 T250A 7.1 16.5 90.9 14.0	0
- D1 14.9 1.2 6.0 92.4 16.7	7
- D2 14.9 2.0 7.0 90.9 15.0	0
Moor – D3 14.7 2.0 10.0 89.8 13.7	7
resistant – G5 14.3 2.0 12.0 89.0 13.1	1
tools — G6 14.1 2.0 15.0 87.8 11.9	9
For wear &	3
- G8 13.2 3.0 25.0 83.0 8.2	2
- GR30 14.9 3.3 8.0 89.0 12.9	9
Impact – GR40 14.6 4.0 9.5 87.7 11.8	8
resistant tools – GR50 14.5 4.0 10.5 87.0 11.2	2
- GH65 14.0 4.0 15.5 85.5 10.2	2
FO 14.9 0.5 5.0 93.6 20.1	1
Micro – F1 14.5 0.5 8.5 92.7 18.0	0
- A1 14.1 0.5 13.0 91.4 15.6	6
For special application — AFU 14.6 0.3 8.0 93.6 19.4	4
Ultra micro — AF1 14.1 0.3 12.0 92.5 17.3	3
- XF1 14.5 0.2 9.0 93.5 20.4	4
- BL005 15.5 0.2 0.5 27.0	0
For high wear resistant tools- BL100 15.40.30.525.3	3
- BL130 15.2 0.3 3.0 94.2 21.0	0
- M3 14.3 0.8 9.5 92.2 16.9	9
For anti-corrosive tools — M23S 14.8 2.0 8.0 90.3 14.2	2
- BL005L 15.5 0.2 0.5 - 27.0	0
For lenses forming mold — BL130L 15.2 0.3 3.0 94.2 21.0	0
- AF1L 14.1 0.3 12.0 92.5 17.3	3

The above is our standard grades. Please feel free to contact us for other grades.

Grade Property (Typical Value)

		T.R.S.	Fracture Toughness K1c **	Compressive Strength	Impact Strength	Young's Modulus	Thermal Conductivity (RT)	Poisson's Ratio	Thermal Expansion Coefficient
Hv(GPa) @600° C	Hv(GPa) @800° C	(GPa)	(MPa·m ^{1/2})	(GPa)	(x10⁻ ⁴GPa⋅m)	(GPa)	(W/(m·K))	ν	(x10 ⁻⁶ /K) (to 400°C)
8.9	5.9	1.9	8.1	4.9		470	0.22	14	6.2
 8.7	5.7	2.3				510	0.22	31	6.2
8.3	5.2	2.4	9.1			520	0.22	31	6.5
 8.7	5.1	2.8				530	0.22	59	6.0
9.8	6.6	2.0		5.9		560	0.21	46	5.6
 9.6	6.0	2.4	8.5			550	0.22	55	5.7
 7.4	4.3	2.9	11.5			520	0.23	65	6.2
12.9	8.2	2.4	6.3	6.1		650	0.21	109	4.7
 12.0	7.3	3.4	6.5			640	0.21	105	4.5
 10.8	6.6	2.5	8.5	5.7		620	0.21	105	5.0
 10.0	5.9	3.4				620	0.21	84	4.5
 10.3	5.6	3.3	9.9			580	0.22	76	5.3
 9.0	4.4	3.5	10.8			550	0.22	78	5.7
		2.2	7.0			440	0.22	15	7.9
 8.7	5.8	2.1	8.5			390	0.27	26	7.9
12.0	7.4	2.1	6.5			630	0.21		5.0
 10.4	6.0	3.0	8.3	5.5	0.72	640	0.21	98	5.7
 		3.2	10.3			590	0.22	96	5.4
7.7	4.2	3.3	13.5	4.8	0.81	580	0.22	96	6.3
 7.3	3.9	3.3	17.5	4.4	0.77	540	0.23	71	5.9
4.3	2.6	3.0	18.5		0.73	490	0.24	97	6.6
 		2.9	20.0	3.2	0.89	460	0.24	63	7.1
7.9	4.7	2.8				610	0.21		5.1
 5.9	3.9	2.8		4.5	0.47	520	0.22	76	5.0
5.3	3.7	2.8		4.3	0.62	520	0.22	76	5.5
 		2.7				530	0.23		5.9
		2.0	6.7			650	0.21	47	5.0
 12.8	6.9	2.6	7.8			600	0.22	47	5.3
9.5	4.7	3.3	8.6			560	0.23	42	5.7
		3.8	6.0			610	0.22	52	5.3
		4.4	8.3			570	0.22	36	5.5
 		4.0	5.5			610	0.22	38	5.4
		1.0	3.5			670	0.21	37	4.5
 20.3	17.5	1.3	4.5			680	0.21	47	4.2
14.5	9.6	2.9	5.4			660	0.20	56	4.5
11.1	6.1	2.5	8.0			570	0.22	59	5.5
9.0	5.3	3.1	8.5	4.9	0.99	600	0.22	85	5.9
		1.0	3.5			670	0.21	37	4.5
14.5	9.6	2.9	5.4			660	0.20	56	4.5
		4.4	8.3			570	0.22	36	5.5

**By indentation method

*These TRS values are different from the values described on page11. If higher TRS value is required, please contact us.

Application of each Grade

						Application																				
						G	ener	al C	utti	na			Ci	rcul	ar sa	aw			0							
				Prop	erty			Too	Ι.		resig	are stant	Wo	boc	Me	tal	SII F	tter Slade	ΓĂL P		Die	& M	1old			
						(V	Vork	Ma	teria	al)		June	cut	ting	cut	ting		nuu	C							
																					pld	old				SS
	ISO	Code	Grade						_	tal	e	nce					D				D m u	ja m		0		nes
	150	couc	Grade		RA	ē		lee	eria	me	and	sta		ard	ē	lee	tin	ng			tion	ctin	σ	nolo		ive
				, m	Ч	ste	6	st	ate	snc	sist	esi		poi	ste	st	cut	Itti		pld	jec.	mpa	lom	u su		ros
				Ъ	Jes	ral	iro	les		erro	re	L L	_	<u>c</u>	ral	les	ral		jing	Ĕ	U.	L CO	ng	<u>e</u>	٩	cor
				R.S	ardı	ene	ast	ain	oti	onfe	ear	paq	000	Irti	ene	ain	ene	eta	l'us	ess	asti	wde	rgi	ass	ZZC	ti-
				Ē	Ĥ	Ű	Ű	St	μÂ	Ž	≥	μ	\geq	Pa	Ű	St	Ű	Σ	Ū	P	Ē	Ро	ЪС	Ū	ž	Ā
		P10	ST10P	1.9	92.1	0																				
	Р	P20	ST20E	2.3	91.7	0		0																		
	grade	P30	A30N	2.4	91.0	0									0											
		P40 M10		2.8	90.4	0	0	0																		
	M	M20	U2	2.4	91.5	0	0	0																		
For	grade	M40	A40	2.9	89.2	0	0	0																		
cutting		K10	H1	2.4*	93.2		0											0								
tools		K10	EH10	3.4	92.4		0			0								0								
	K arade	K10 K20	G10E FH20	2.5	90.9				0																	
	gruue	K20	KH03	3.3*	91.4		0		0											0	0					
		K40	KH05	3.5	90.4		0													0	0					
	Cermet	P10	T1200A	2.2	91.9	0		0																		
		P30	1250A	2.1	90.9	0		0																		
		—	D1	2.1	92.4						0										0	0				
			D2	3.0	90.9						0										0	$ \bigcirc$				
F an	Ware	_	D3 G5	5.2	89.8						0							\cap			0	0	0			
For wear	resistance	—	G6	3.3	87.8						0							<u> </u>			0	0	0			
م impact		—	G7	3.0	84.5						0												0			
resistant		_	G8	2.9	83.0						0	0											0			
LOOIS	Impact resistance		GR30	2.8	89.0							0														
			GR50	2.8	87.0							0							0				0			
		—	GH65	2.7	85.5							0							0				\odot			
			FO	2.0*	93.6	0					0						0	0								
		Micro	F1	2.6	92.7	0					0						0	0								
	fine	gran	A1	3.3*	91.4						0						0	0		0						
	grain	Ultra	AFU	3.8	93.6						0						0	0		6						
		grain	XF1	4.4	92.5												0	0								
		<u> </u>	K82S	2.1	91.7										0	0										
		Р	A30N	2.4	91.0										0	0										
		grade	A30S	2.5	91.0										0	0										
		Carbide	K725 4355	2.6	90.0										0	0										
			YC01F	2.3	92.4										0	0										
For		Cormot	KA30	1.8	92.1										0	0										
Specific	5000	Cermet	YC03F	2.2	91.6										0	0										
Purpose		K arada carbida	YC05F	2.5	91.1										0	0										
		r yi aue cai bide	BL720	2.9	93.4									0												
		High wear	BL220	2.9	92.8									0												
		resistatice	BL230	2.5	92.0						-			0											-	
	For hig	ıh wear	BL005	1.0	—						0														0	
	resis	tance	BL130	2.9	94 2	0					0						0							U	9	
	For a	anti-	M3	2.5	92.2						Õ															0
	corrosi	iveness	M23S	3.1	90.3						0															\odot
	For le	enses	BL005L	1.3	-																			0		
	formin	forming mold		2.9	94.2																		0	0		
L				+.4	12.5				1	I	I			I	1							I			L	I

*These TRS values are different from the values described on page11. If higher TRS value is required, please contact us. (—)Please refer to page 23 for the hardness of BL005 and BL100

©:Most recommended O:Recommended Producible Blank for General Cutting Tools,

Wear & Impact Resistant Tools

Measurement (mm)	Tolerance
5 or less	±0.10 mm
over5 bellow10	±0.15 mm
over10 bellow20	±0.20 mm
over20 bellow30	±0.25 mm
over30 bellow40	±0.30 mm
over40 bellow50	±0.35 mm
over50	±0.7%

Please use the above charts only as a guide. Please contact us for the detail.

Blanks for General Cutting Tools

Application Example

Brazed tools / Tools for auto-lathe / Drills Endmills / Reamers

Applicable Grades

Blanks for Wear & Impact Resistant tools

Application Example

Punches / Die molds / Sleeves Crushing tools / Sliding parts

Microstructure of Typical Grades

Blanks for Slitters & Blades / Die & Mold

Application Example

Slitters & blades for textile, Food, Electric / Electronics parts, Resin, Automotive parts, Rubber, etc.

Blade for crushing application.

The die & mold demand spreads with the expansion of the new products such as smart phones or tablet terminals.

On the other hand the performance enhancement of the die & mold is pursued with miniaturization and the densification of molding materials.

We have many customers who support our carbide material for die & mold including AF1 which shows stable high efficiency.

Ultra micro grain grade **AF1**

This is the ultra micro grain grade with 0.3 grain which enables us to get sharp cutting edges. AF1 has the extreme high TRS and hardness which bring a long tool life for precision die & molds.

General grades for wear resistant tools D1 / D2 / D3 / G5 / G6 / G7 / G8

The above shows general carbide grades for wear resistant tools. It is a turn of D1, D2, D3, G5, and G6 from abrasion resistant high one Please choose the suitable grade depending on the requirement.

Micro Grain Grade KH03 / KH05

They are well balanced grades of both hardness and TRS, recommended for punches and dies.

Grade for impact resistant tools GR30 / GR40 / GR50 / GH65

They are grades to resist high impact force such as cold forging. Please refe\r to the bellow chart to choose the suitable grade.

Blanks for Die & Mold

	-				Pr	ress mo	ld			Dissila					1		
Applic	able Gr	ade	Lead frame (Aluminum, Cupper)		Connector (Blanking, Bending) (Phosphor Bronze)		Connector (Blanking, Bending) (SUS)		Motor core	injection mold				compacting mold		Drawing die & Plug	Cold forging die
Classific	ation	Grade	Punch	Die	Punch	Die	Punch	Die	Punch Die	Pot	Plunger	Gate	LF fixing pin	Punch	Die		
	Fine	KH03		0		0	0	O		O		0					
	grain	KH05		0		0		0		0		0					
	Minus	F0	0		0												
Micro	grain	F1	0		0												
grade	ide	A1	0		0												
	Ultra micro grain	AFU	0		0												
		AF1	0		Ø		0										
		XF1	0		0												
	—	D1								0		0				0	
	—	D2								0		0			0	0	
Wear	—	D3														0	
resistant	_	G5							0		0		0	0			0
grade	_	G6							0		0		0	0			0
	_	G7															0
		G8															0
		GR30															0
Impact resistant		GR40															0
grade		GR50															0
	-	GH65															0

Grades for Die & Mold and its Application

©:Most recommended O:Recommended

Stock

STOCK										Dimensio	ns (mm)
	Т	-	L	-	V	V		Gr	ade		
Cat. No.	Nominal Dimensions	Tolerance	Nominal Dimensions	Tolerance	Nominal Dimensions	Tolerance	A1	AF1	кноз	KH05	Fig
0B10060012	1.2										1
0B10060015	1.5										1
0B10060020	2.0	+0.5	100	+1.5	60	+1.0 0					1
0B10060025	2.5	+0.2	100	0							1
0B10060030	3.0										1
0B10060040	4.0										1
0B15060020	2.0										1
0B15060025	2.5										1
0B15060030	3.0										1
0B15060035	3.5										1
0B15060040	4.0										1
0B15060045	4.5	.05		. 4 5		. 1 0					1
0B15060050	5.0	+0.5 +0.2	150	+1.5	60	+1.0					1
0B15060055	5.5			Ū		Ū					1
0B15060060	6.0										1
0B15060070	7.0										1
0B15060080	8.0										1
0B15060090	9.0										1
0B15060100	10.0										1

Plates with top and bottom faces ground can be made to order.

Binder-less Carbide Blanks for Lens Forming Mold

High hardness and high surface quality are realized adopting ultra micro gain WC and minimal Co content.

Grade Property

		Grain		C 10	Hardness		TDC	KIC	Thern coeffic	nal expa cient(×1	nsion 0⁻⁰/°C)	Characteristics				
Grade		size (µm)	content (wt%)	gravity	HRA	Hv (GPa)	1.R.S. (GPa)	$\binom{MPa}{m^{1/2}}$	400°C	600°C	800°C	Hardness	Low thermal expansion	Surface quality	Grind ability	
Minimal Co content	BL100L	0.3	0.5	15.4	_	25.3	1.3	4.5	4.2	4.5	4.8	Ø	0	0	Δ	
Low Co content	BL130L	0.3	3	15.2	94.2	21.0	2.9	5.4	4.5	4.8	5.2	0	0	0	0	
Ultra micro grain WC	AF1L	0.3	12	14.1	92.5	17.3	4.4	8.3	5.5	5.8	6.3	Δ	Δ	0	O	

Microstructure

WC grain is grey and Co is black in the following photo.

Producible Blank Dimensions.

Producible dimensions are restricted comparing with other grades.

*If you have a requirement which is other than the above producible dimensions, please contact us.

Anti-Corrosive Carbide Blanks

Please try our anti-corrosive carbide which has sufficient successful results for a long time.

For belt cleaner or high pressure plant parts which are used under high corrosive environment.

In addition to high wear resistance and anti-corrosiveness, carbide products which is required to be no magnetism for molding or cutting magnetic materials.

Anti-Corrosive Non Magnetic Carbide M23S	Anti-Corrosive Carbide M3
Characteristic : Carbide grade with WC-Ni-Cr which shows excellent anti-corrosiveness and no magnetism	Characteristic : Carbide grade with WC-Co-Ni-Cr which shows excellent anti-corrosiveness with high hardness and T.R.S.
Application : Belt cleaner, Waste water treatment equipment parts, Die & mold for the magnetic powdery molding	Application : Belt cleaner, Plant parts used under high corrosive environment with high pressure Pump parts for sea water

Properties of M23S and M3

Corrosion-resistance expresses the elution weight of the cemented carbide in the acid solution $% \left(\mathcal{A}^{(1)}_{(1)},\mathcal{A}^{(2)}_{(2)},\mathcal{A}^{$

	Grade		Property		Corrosive resistance (Weight reduction by corrosion $g/m2Hr$)					
Туре		S.G.	Hardness (HRA)	T.R.S. (GPa)	5%HCI 25°C24Hr	36%HCI 50°C8Hr	10%HNO3 25°C24Hr			
Anti-corrosive nonmagnetic carbide	M23S	14.8	90.3	3.1	0.15	0.49	0.07			
Anti-corrosive carbide	M3	14.3	92.2	2.5	0.30	1.97	16.5			
Ordinal Carbide for Comparison	G5	14.3	89.0	3.3	0.17	3.5	37.1			

Anti corrosiveness

Anti-corrosive carbide

Ordinal carbide

Non magnetism

Nonmagnetic Ordinal carbide

High Wear Resistant Carbide Blanks (Binder-less Carbide)

It is necessary to reduce the content of Co which is binder metal in addition to the miniaturization of the grain size of WC in order to improve the hardness of the alloy. We succeeded in the development of the carbide grade which largely improved the hardness by reducing Co content of the binder metal to the maximum while using WC of the ultra micro fine grain for a main ingredient, and maintaining necessary carbide strength. It is mainly used for molds for glass lens and water blast nozzles.

Application

Water jet nozzle / Mold for glass lens / Sliding parts

Applicable Grade

BL005 / BL100		Co content (wt%)	Hardness HV(GPa)
	BL005	0.5	27.0
	BL100	0.5	25.3

Microstructure

Carbide Saw Tip Blanks

Application

Metal cutting Wood cutting Particle board cutting

Applicable Grade

New cermet

Microstructure and physical properties are remarkably improved

- 1. Thick binder layer \rightarrow High stability of brazing
- 2. Hybrid structure \rightarrow Improvement of physical properties

Property of Saw Tip Carbide

Classification	ISO code	Grade	S.G.	Grain size	Binder Content		Hard	lness		T.R.S.	Fracture toughness K1c	Young's modulus	Poisson's Ratio	Thermal conductivity (RT)	Coecient of Thermal Expansion 0~400℃
				(µm)	(wt%)	HRA	Hv(GPa)	Hv(GPa) @600° C	Hv(GPa) @800° C	(GPa)	(MPam ^{1/2})	(GPa)	ν	(W/(m·K))	(x10 ⁻⁶ /K)
	P20	K82S	12.1	3.4	9.0	91.7	16.1	8.9	5.7	2.1	_	510	0.22	35	6.2
	P30	A30N	11.6	3.4	11.5	91.0	14.9	8.3	5.2	2.4	9.1	520	0.22	31	6.5
P grade carbide	P30	A30S	11.8	3.4	11.0	91.0	14.8			2.5	8.8				
	P40	K72S	12.4	3.6	12.0	90.0	13.9	7.9	4.6	2.6	10.5	510	0.22	44	6.1
	P40	A35S	12.7	3.9	11.5	90.4	14.4			2.4	9.5				
	P20	YC01F	7.4	_	15.0	92.4	15.8			2.3	6.5	440	0.22	16	8.0
Cormot	P30	KA30	7.2	_	15.5	92.1	14.5	8.9	5.9	1.8	8.0	430	0.22	12	7.8
Cermet	P30	YC03F	7.5	—	19.0	91.6	14.5	8.7	5.5	2.2	7.5	420	0.23	15	8.1
	P40	YC05F	7.3	—	21.5	91.1	14.5	8.5	5.0	2.5	8.0	420	0.23	16	8.3
K grade carbide	_	GK21A	14.6	2.4	8.0	90.5	14.3	8.5	5.1	3.1	9.7	610	0.22		5.2
High wear resistance	_	BL720	15.3	1.4	2.0	93.4	19.4	13.6	9.9	2.9	5.2	690	0.20	92	4.5
	_	BL220	15.4	2.0	2.0	92.8	18.1	14.0	10.0	2.9	5.4	690	0.20	99	4.5
	_	BL230	15.3	2.0	3.0	92.0	16.8	12.0	7.8	2.5	6.0	670	0.21	122	4.6

By indentation method

Description of Saw Tip Blanks

Standard Line-up

Description	θ
SW L-T-W	0°
SWA L-T-W	10°
SWB L - T - W	15°
SWC L - T - W	20°

Description	θ
SWP L-T-W	0°
SWPA L - T - W	10°
SWPB L - T - W	15°
SWPC L - T - W	20°
SWPD L - T - W	25°

With a Chipbreaker

SW type $(\theta=0^{\circ})$

No	Description	Carbide grade				Cermet & Fine grain grade					
INO.	Description	I	_	-	Г	l	L	7	-		
1	SW 52 - 10 - W	5.20		1.00		5.01		0.96			
2	SW 60 - 18 - W	6.00		1.80		5.78		1.73			
3	SW 65 - 15 - W	6.50		1.50		6.26		1.44			
4	SW 65 - 20 - W	6.50		2.00	+0.2	6.26		1.92			
5	SW 65 - 25 - W	6.50	+0.3 -0.0	2.50		6.26	+0.3	2.40	+0.2 -0.0		
6	SW 70 - 20 - W	7.00		2.00		6.74		1.92			
7	SW 75 - 25 - W	7.50		2.50		7.23		2.40			
8	SW 80 - 25 - W	8.00		2.50		8.00		2.50			
9	SW 100 - 30 - W	10.00		3.00		9.63		2.88			
10	SW 50 - 20 - W	5.00		2.00		5.00		2.00			
11	SW 60 - 20 - W	6.15		2.05		6.00		2.00			
12	SW 60 - 30 - W	6.00		3.00	±0.1	5.78	±0.1	2.89			
13	SW 70 - 35 - W	7.00		3.50		6.74		3.37			
14	SW 70 - 50 - W	7.00		5.00		6.83		4.88	±0.1		
15	SW 80 - 30 - W	8.00		3.00		8.00		3.00			
16	SW 90 - 50 - W	9.00	±0.1	5.00		8.78		4.88			
17	SW 105 - 30 - W	10.50		3.00		10.50		3.00			
18	SW 110 - 50 - W	11.00		5.00		10.73		4.88			
19	SW 130 - 40 - W	13.00		4.00		12.68		3.90			
20	SW 130 - 50 - W	13.00		5.00		12.68		4.88			
21	SW 155 - 40 - W	15.50		4.00		15.12		3.90			
22	SW 155 - 50 - W	15.50		5.00		15.50		5.00			
23	SW 70 - 25 - W	7.18	+0.15	2.56	+0.1	7.00	+0.15	2.50	+0.1		
24	SW 70 - 30 - W	7.00	±0.15	3.00	±0.1	6.74	±0.15	2.89	±0.1		
25	SW 105 - 35 - W	10.76		3.59		10.50		3.50			
26	SW 180 - 50 - W	18.00	±0.2	5.00	±0.1	17.56	±0.2	4.88	±0.1		
27	SW 200 - 50 - W	20.00		5.00	00	19.51		4.88			

SW type

W

Description	θ
SW L-T-W	0°
SWA L - T - W	10°
SWB L - T - W	15°
SWC L - T - W	20°

(mm) **W : 1.5 to 5.5** $1.5 \le W \le 4.9^{+0.15}_{-0}$ $4.9 < W \le 5.5^{+0.2}_{-0}$

SWA type $(\theta=10^{\circ})$

No.	Description		Carbide	e grade		Cermet & Fine grain grade					
	Description	L			Г	l	-	Т			
1	SWA 50 - 15 - W	5.00	+0.3 -0.0	1.50	+0.2 -0.0	4.81	+0.3 -0.0	1.44	+0.2 -0.0		

SWB type $(\theta=15^{\circ})$

No	Description		Carbide	e grade		Cermet & Fine grain grade				
NO.	Description	L		Т		l	-	Т		
1	SWB 45 - 18 - W	4.50		1.80		4.50		1.80	+0.2 -0.0	
2	SWB 50 - 16 - W	5.19		1.66		5.00		1.60		
3	SWB 50 - 18 - W	5.13		1.85		5.00		1.80		
4	SWB 60 - 18 - W	6.00	-	1.80	+0.2 -0.0	6.00	+0.3 -0.0	1.80		
5	SWB 60 - 30 - W	6.16	+0.3 -0.0	3.08		6.00		3.00		
6	SWB 65 - 20 - W	6.50		2.00		6.50		2.00		
7	SWB 70 - 30 - W	7.18		3.08		7.00		3.00		
8	SWB 80 - 30 - W	8.21		3.08		8.00		3.00		
9	SWB 90 - 30 - W	9.00		3.00		8.67		2.89		

SWC type $(\theta=20^{\circ})$

No	Description		Carbide	e grade		Cermet & Fine grain grade					
INO.	Description	L	L		Т		-	Т			
1	SWC 50 - 15 - W	5.00		1.50		5.00		1.50			
2	SWC 55 - 20 - W	5.50		2.00	-	5.30		1.92	+0.2 -0.0		
3	SWC 60 - 17 - W	6.00		1.70		6.00		1.70			
4	SWC 60 - 20 - W	6.00		2.00		6.00		2.00			
5	SWC 70 - 22 - W	7.00		2.20		7.00	+0.3 -0.0	2.20			
6	SWC 70 - 25 - W	7.00	+0.3	2.50	+0.2 -0.0	7.00		2.50			
7	SWC 70 - 30 - W	7.00	-0.0	3.00		6.74		2.89			
8	SWC 75 - 25 - W	7.50		2.50		7.23		2.40			
9	SWC 80 - 20 - W	8.00		2.00		7.71		1.92			
10	SWC 80 - 25 - W	8.00		2.50		7.71		2.40			
11	SWC 90 - 30 - W	9.00		3.00		8.67		2.88			
12	SWC 110 - 30 - W	11.00		3.00		10.59		2.88			

SWP type $(\theta=0^{\circ})$

No	No. Description		Description Carbide grade				Cermet & Fine grain grade				E		E	
INO.			l	L	Т		l	_	Т		L		F .	
1	SWP	90 - 30 - W	9.34	±0.15	3.11		9.00	±0.15	3.00		1.5		1.5	
2	SWP	100 - 35 - W	10.00	±0.1	3.50	±0.1	10.00	±0.1	3.50	±0.1	2.0	±0.15	0.5	±0.15
3	SWP	130 - 35 - W	13.49	±0.2	3.63		13.00	±0.2	3.50		2.0		0.5	

SWPA type $(\theta=10^{\circ})$

No		Description		Carbid	e grade		Cermet & Fine grain grade				E		E.		
NO.	Description		L		Т		l	L		Т		L		r	
1	SWPA	32 - 18 - W	3.20		1.80		3.08		1.73		0.30		0.30		
2	SWPA	58 - 24 - W	5.94		2.46		5.80		2.40		1.00		0.50		
3	SWPA	65 - 20 - W	6.50	+0.3	2.00	+0.2	6.26	+0.3	1.92	+0.2	2.00	10.15	0.50	10.15	
4	SWPA	70 - 22 - W	7.00	-0.0	2.20	-0.0	7.00	-0.0	2.20	-0.0	2.00	±0.15	0.70	±0.15	
5	SWPA	75 - 24 - W	7.88		2.52		7.50		2.40		2.00		0.70		
6	SWPA	77 - 27 - W	8.09		2.84		7.70		2.70		2.00		0.70		

SWPB type $(\theta = 15^{\circ})$

No	Description	Description		e grade	e grade		net & Fin	e grain g	grade E		=	E	
110.	Description	L	-	Т		L	L		Т		-		
1	SWPB 40 - 20 - W	4.15		2.08		4.00		2.00		1.00		0.50	
2	SWPB 45 - 15 - W	4.50		1.50		4.50		1.50		1.00		0.50	
3	SWPB 50 - 15 - W	5.00		1.50		5.00		1.50		1.00		0.50	
4	SWPB 50 - 17 - W	5.00		1.70		4.94		1.68		1.00		0.50	
5	SWPB 55 - 15 - W	5.50		1.50		5.30		1.45		1.00		0.50	
6	SWPB 55 - 18 - W	5.50		1.80		5.50		1.80		1.00		0.50	
7	SWPB 55 - 25 - W	5.50		2.50		5.37		2.44		1.00		0.50	
8	SWPB 59 - 19 - W	5.90	+0.3	1.90	+0.2	5.69	+0.3	1.83	+0.2	1.00	+0.15	0.50	+0.15
9	SWPB 60 - 18 - W	6.00	-0.0	1.80	-0.0	6.00	-0.0	1.80	-0.0	1.00	±0.15	0.50	±0.15
10	SWPB 60 - 20 - W	6.00		2.00		6.00		2.00		1.00		0.50	
11	SWPB 65 - 20 - W	6.50		2.00		6.50		2.00		1.00		0.50	
12	SWPB 70 - 20 - W	7.00		2.00		7.00		2.00		1.00		0.50	
13	SWPB 70 - 23 - W	7.00		2.30		7.00		2.30		1.00		0.50	
14	SWPB 70 - 25 - W	7.00		2.50		6.74		2.41		1.00		0.50	
15	SWPB 80 - 25 - W	8.00		2.50		8.00		2.50		1.00		0.50	
16	SWPB 85 - 25 - W	8.50		2.50		8.19		2.41		1.00		0.50	

(mm)
W : 1.5 to 5.5
$1.5 \le W \le 4.9^{+0.15}_{-0}$
$4.9 < W \le 5.5^{+0.2}_{-0}$

W

SWPC type $(\theta=20^{\circ})$

No	Description	(Carbide	e grade		Cern	net & Fin	ie grain g	grade		E	F														
NO.	Description	L		٦	Г	L	-	-	Г		-															
1	SWPC 40 - 18 - W	4.00		1.80		4.00		1.80		0.70		0.30														
2	SWPC 50 - 15 - W	5.00		1.50		5.00		1.50		1.50		0.50														
3	SWPC 55 - 15 - W	5.50		1.50		5.30		1.45		1.50		0.50														
4	SWPC 55 - 16 - W	5.50		1.60		5.50		1.60		1.50		0.50														
5	SWPC 55 - 18 - W	5.50		1.80		5.50		1.80		1.50		0.50														
6	SWPC 55 - 21 - W	5.71		2.18		5.50		2.10		1.50		0.50														
7	SWPC 60 - 15 - W	6.00		1.50		5.78		1.44		2.00		0.50														
8	SWPC 60 - 18 - W	6.00		1.80		6.00		1.80		1.50		0.50														
9	SWPC 60 - 20 - W	6.00		2.00		6.00		2.00		1.50		0.50														
10	SWPC 60 - 20 - W	6.00		2.00		6.00		2.00	+0.2 -0.0	2.00	±0.15	1.00														
11	SWPC 65 - 20 - W	6.50		2.00		6.50		2.00		2.00		0.50														
12	SWPC 65 - 20 - W	6.50		2.00		6.26		1.92		2.00		1.00														
13	SWPC 65 - 23 - W	6.50		2.30		6.26		2.21		2.00		0.80														
14	SWPC 65 - 25 - W	6.50		2.50		6.26		2.40		2.00		1.30														
15	SWPC 70 - 20 - W	7.00	+0.3 -0.0	2.00	+0.2 -0.0	6.74	+0.3 -0.0	1.92		2.00		1.00	±0.15													
16	SWPC 70 - 23 - W	7.00		2.30	0.0														7.00		2.30		2.00		0.50	
17	SWPC 77 - 25 - W	7.70		2.50		7.70		2.50		2.50]	1.25														
18	SWPC 80 - 23 - W	8.00		2.30		8.00		2.30		2.00		0.50														
19	SWPC 80 - 25 - W	8.00		2.50		7.71		2.41		2.00		1.30														
20	SWPC 85 - 25 - W	8.50		2.50		8.19		2.40		2.00		1.30														
21	SWPC 90 - 25 - W	9.00		2.50		8.67		2.40		2.00		1.30														
22	SWPC 90 - 27 - W	9.00		2.70		8.67		2.60		3.00		1.30														
23	SWPC 95 - 27 - W	9.86		2.80		9.50		2.70		2.50		0.70														
24	SWPC 100 - 25 - W	10.00		2.50		10.00		2.50		3.00		1.30														
25	SWPC 100 - 27 - W	10.37		2.80		10.00		2.70		2.50		0.70														
26	SWPC 105 - 30 - W	10.50		3.00		10.11		2.88		3.50		1.50														
27	SWPC 110 - 35 - W	11.00		3.50		10.59		3.37		3.00		1.50														
28	SWPC 120 - 30 - W	12.00		3.00		11.56	-	2.89		2.00		1.00														
29	SWPC 140 - 30 - W	14.00		3.00		13.49		2.88		4.00		1.30														

SWPD type (θ =25°)

No	Description		Carbid	e grade		Cern	net & Fin	e grain g	rade		-		-	
INO.	Description	L	-	1	Г	l	-	٦	Г		E	I		
1	SWPD 45 - 15 - W	4.50		1.50		4.34		1.46		1.00		0.50		
2	SWPD 60 - 15 - W	6.00	+0.3 -0.0	1.50		5.78		1.44		1.00		0.50		
3	SWPD 60 - 18 - W	6.00		1.80		5.78		1.73		1.00		0.50	+0.15	
4	SWPD 60 - 20 - W	6.00		2.00	+0.2	5.78	+0.3	1.92	+0.2 -0.0	1.00	+0.15	0.50		
5	SWPD 62 - 19 - W	6.44		1.97	-0.0	6.20	-0.0	1.90		1.00	±0.15	0.50	±0.15	
6	SWPD 65 - 20 - W	6.50		2.00		6.50		2.00		1.00		0.50		
7	SWPD 70 - 20 - W	7.00		2.00	-	6.74		1.92		1.00		0.50		
8	SWPD 70 - 23 - W	7.00		2.30		6.74	-	2.21		1.00		0.50		

MEMO

 	•••••		 	 		 		 		 	 				 			
 	 •••••			 •••••				 		•••••	 			•••••	 	•••••		
 				 •••••				 		•••••	 				 			
 	,			 		 		 							 			
	•••••			 •••••				 		•••••					 	•••••		
 · · · · · ·	,			 		 		 							 			
 • • • • •				 				 		 	 				 			
	•••••			 •••••				 							 			
	•••••			 •••••				 		•••••					 			
 	 	,	 	 	 	 	 	 	 	 	 	 			 	 		
 	 	;	 	 	 	 	 	 	 	 	 	 			 			
 	 		 	 	 	 	 	 	 	 ;	 	 			 	 		
 : :	 		 	 	 	 	 	 	 	 	 	 			 	 		
 	 	,	 	 	 	 	 	 	 	 	 	 			 	 		
 :										-			-	-		:	:	

MEMO

· · · · · ·			 · · · · · ·	· · · · · · ·					 										 	
) - - 		 			 				 		 				 	
		 	 • • • • • •	· · · · · ·		 		 		 		 								
	- 	 	 	- - - - -		 		 		 		 								
	· · · · · · ·		 	· · · · · ·					 											
	- - - - -	 		- - - 		 		 	 	 	 	 	 		 		 		 	
	:		 	: 					 	 			 		 				 	
• • • • • •		 	 · · · · · ·	· · · · · ·		 			 			 	 		 				 	
· · · · · ·		 	 	· · · · · ·		 		 		 		 								
		 		,		 		 	 	 	 		 		 				 	
	-	 				 		 		 		 								
				- - - - -					 				 						 	
	:			:	:		: :			 						:		:	 	

• Very hot or lengthy chips may be discharged while the machine is in operation. Therefore, machine guards, safety goggles or other protective covers must be used. Fire safety precautions must also be considered.

< SAFETY NOTES >-

Sumitomo Electric Industries, Ltd.

Hardmetal Division

Global Marketing Department : 1-1-1, Koyakita, Itami, Hyogo 664-0016, Japan

https://www.sumitool.com/global