

Small Lathe Tools

Indexable Head Type Quick Change Tool Holder **APM** series

Sharply reduces changeover time with outstanding change repeatability

Polygon taper shape achieves head change accuracy within 5µm

Small Lathe/Autolathe Tool series

Features

- Tool changeover time reduced Mounting / removing the head alone improves workability and safety when changing the insert, reducing machine downtime at changeovers thus increasing productivity
- Excellent head change repeatability
 High-accuracy polygon taper shape achieves
 change repeatability within 5µm
- Lineup of 10, 12 and 16mm shank sizes support a wide range of CNC autolathes, etc.
- Supports front turning, back turning, grooving, and cut-off
- Internal coolant supply design, supports coolant supply without hose

Cutting Performance

• Low vibration

The APM series realises low vibration performance equivalent to that of integrated holders

Work Material: SUS420J2 Tool: Shank: APM-R1212X84J Head: APM12-SDJCR11T3J Insert: DCGT11T302MN-SI (AC1030U) Cutting Conditions: vc = 80m/min f = 0.05, 0.10, 0.13mm/rev ap=0.5, 1.0mm Wet

Machined surface roughness

The APM series realises machined surface roughness equivalent to that of integrated holders

Work Material: SUS420J2 Tool: Shank: APM-R1212X84J Head: APM12-SDJCR11T3J Insert: DCGT11T302MN-SI (AC1030U) Cutting Conditions: vc = 80m/min f = 0.05, 0.10, 0.13mm/rev ap=0.5, 1.0, 2.0mm Wet

Head Change Repeatability

Polygon taper shape achieves change repeatability within $5\mu m$

APM series Combination Examples

Shank

The product appearance may vary in colour, but these variations do not affect the performance.

Head Lineup

Tooling Selection

A			External Turning		
Applications	General Turning / Facing	General Turn	ing / Profiling	General Turning	Back Turning
Insert Shape	80° Diamond type	55° Diamond type 💦	35° Diamond type 📈	Triangular type 🔒	Dedicated Insert
Clamp Mechanism	(Positive)	(Positive)	(Positive)	(Negative)	(BT type)
Screw-on	SCLC type	SDJC type	SVJB type SVJP type	_	SBT type
Lever Lock	_	_	_	PTGN type	_

Applications	External Gr	ooving / Threadii	ng / Cut-off
Applications	Grooving	Threading	Grooving / Cut-off
Insert Shape	Dedicated Insert	Dedicated Insert	Dedicated Insert
Clamp Mechanism	(TGA type)	(TTE type)	(GCM type / GCG type)
Screw-on	GWC type	GWC type	_
Clamp-on	_	_	GNDM type GNDL type

Quick Change Holder APM series Precautions for Use

Anti-seizure Cream (APM-P)

When removing the head, it may be difficult to take out even when the set screw has been loosened. As a countermeasure, use dedicated Anti-seizure Cream APM-P to enable smooth removal.

Application Method

Anti-seizure Cream

Anti-seizure Cream is sold separately.

DM series

Shank										Parts			Dimensions (mm
		Height	Width	Overall	Width	Head	Length			Set Screv	N	Plug	Torque Wrench
Cat. No.	Stock	Н	В	LEngth	вн	LH	LF3	Applicable Size	^e Fig	Ð	(N·m	6	ET AL
APM-R1010X84J		10	10	84	13.5	9	69.0	10	1	BTT0507H	Z 0		
APM-R1212X84J		12	12	84	16.0	9	68.5	12	1	BTT0510H	5.0	AFIMINOF	10033330()
APM-R1616X84J		16	16	84	20.0	10	68.0	16	1	BTT0611H	4.0	APM-G1/8P	TRDRS4540(*)
Coloct chapter and boads with	no te cloi		Licabla	ize *	Coo bo		oc for c	nocifi	C L L	dimensions (set di	moncion	-)	

Select shanks and heads with matching applicable size. See head tables for specific LF dimensions (set dimensions). * Torque wrench is sold separately from the main body.

Dimensions (mm)

Fig 1

Parts (Set Screw)

Cat. No.	Stock	Screw Standard	Overall Length	Applicable Shank	Nm	Fig
BTT 0507H		SW3.5	10.0	APM-R1010X84J	3.0	1
BTT 0510H		SW3.5	12.5	APM-R1212X84J	3.0	1
BTT 0611H		SW4.5	14.5	APM-R1616X84J	4.0	1
BTT 0507T		T10	7.0	APM-R1010X84J	3.0	2
BTT 0510T		T10	9.5	APM-R1212X84J	3.0	2
BTT 0611T		T20	10.5	APM-R1616X84J	4.0	2

Fig 2

Suffix H: Hex Suffix T: Torx (sold separately: use a commercially available wrench)

Set Screw Torque Wrench

Cat. No.	Stock	Screw Standard	Torque Value (N·m)	Applicable Shank	\bigcirc
TDDDCZEZO			7.0	APM-R1010X84J	
1 KDK555550		3003.5	5.0	APM-R1212X84J	
TRDRS4540		SW4.5	4.0	APM-R1616X84J	(For hex)

Torque wrench is sold separately. Dedicated for set screw part number suffix H.

Piping Parts (Plug)

Cat. No.	Stock	Screw Standard	Applicable Shank	Fig
		МО	APM-R1010X84J	1
APMINOP		1*10	APM-R1212X84J	'
APM-G1/8P		G1/8	APM-R1616X84J	1

The shank is shipped with two plugs mounted.

Piping Parts (Hose)

				Dimension	3 (11111
Cat. No.	Stock	L	Screw Standard	Screw Standard	Fig
J-HOSE-G1/8-G1/8-200		200	G1/8	G1/8	1
J-HOSE-G1/8-G1/8-300		300	G1/8	G1/8	1
Hoses are sold separately.					

sepa tely

Parts (Stopper Plug)

Fig 1

Cat. No.	Stock	L	Н	Applicable Shank	Fig
APM10-PLUG		2.2	13.4	APM-R1010X84J	1
APM12-PLUG		3.0	15.9	APM-R1212X84J	1
APM16-PLUG		4.0	19.9	APM-R1616X84J	1

Use the stopper plug to protect the shank joint part when the head is not mounted. (Sold separately)

Piping Parts (Adapter)

Piping Parts (Piping Parts (Adapter) Dimensions (r												
Cat. No.	Stock	Screw Standard	Screw Standard	External Diameter	Applicable Shank	Fig							
I M9 C1 /9 II		мо	C1/9	a15	APM-R1010X84J	1							
J-MO-01/0-0		110	G1/6	CIØ	APM-R1212X84J	I							
J-G1/8-G1/8-U		G1/8	G1/8	ø18	APM-R1616X84J	1							

Adapter is sold separately.

Fig 1 Fig 2 G1/8 14 G1/8

Piping Parts (Connector) Ca

Cat. No.	Stock	Screw Standard	Screw Standard	Fig
J-G1/8-G1/8-00		G1/8	G1/8	1
J-G1/8-G1/8-90		G1/8	G1/8	2

Dimensions (mm)

Sumi Sm**å**ll

Dimensions (mm)

Connectors are sold separately.

ncione (mm)

Dim

Note: When using external coolant supply, attach a plug at the back end as well.

Refer to shank selection on P6 for applicable shank.

* Wrenches are sold separately from heads.

* Wrenches are sold separately from heads.

Refer to the chapter on "Indexable Inserts" in the General Catalogue for applicable inserts.

• mark: Standard stocked item (N·m) Recommended Tightening Torque (N·m)

AP<u>M series</u>

* Wrenches are sold separately from heads.

Refer to the chapter on "Indexable Inserts" in the General Catalogue for applicable inserts.

mark: Standard stocked item
Recommended Tightening Torque (N·m)

External Turning Lever Lock, Internal Coolant Supply

Sumi Sm**ä**ll

Figure shows right-handed (R) tool.

Head											Parts				Dime	ensions (mm)
		Height	Head	Cutting Edge	Cutting Edge	Offset	Overall	Applicable Insert			Lever Pin	Bolt		Shim	Shim Retainer	Wrench
Cat. No.	Stock	Н	LH	WF	HF	WF2	LF	Cat. No.	Applicable Size	Fig	V	S	N·m			(For hexagonal hole)
APM16-PTGN R1604J		22	26	20.5	16	0.5	110	TNDD1604	16	1	LCL3APM	LCS3APM	3.5	LST317APM	LSP3APM	LH025(*)

Refer to shank selection on P6 for applicable shank.

* Wrenches are sold separately from heads.

Refer to the chapter on "Indexable Inserts" in the General Catalogue for applicable inserts.

APM16-SBT R-80J 17.9 30 14.8 Refer to shank selection on P6 for applicable shank.

* Wrenches are sold separately from heads.

Insert (Coated (Carl	oide	e/		DL	.C /		Ce	rmet)						Dimensions (mm)
Cat. No.	AC5015S	AC5025S	AC1030U	AC530U	ACZ150	DL1500	T1500A	Overall Length L	Maximum Depth of Cut CDX	Width of Cut CW	Corner Radius RE	Applicable Head	Fig	F	ig 1 <u>RE</u>	ø6.8
BT R3505 BT R3508 🔊 BT R3515	0000	0 0 0	• 0	•	•	000	•	15 15 15	3.5 3.5 3.5	2.5 2.5 2.5	0.05 0.08 0.15	APMOO-SBTR- 35 J	1 1 1	m # #		
BT R5505 BT R5508 <i>@</i> BT R5515	0000	0000	•	•	•	000	000	19 19 19	5.5 5.5 5.5	3.7 3.7 3.7	0.05 0.08 0.15	APMOO-SBTR- 55 J	1 1 1	15° °°°		
BT R8005 BT R8008 @ BT R8015	0000	0 0 0	• 0	•	•		-	24 24 24	8.0 8.0 8.0	5.2 5.2 5.2	0.05 0.08 0.15	APMOO-SBTR- 80 J	1 1 1	CDX	¥ (

5.2

114

16

BTR**80**00

BFTX0307N

16 1 2.0

TRX10(*)

Recommended Cutting Conditions

Work Material	P Free-Cu	itting Steel	P Carb	on Steel	M Stainl	ess Steel	S Exot	ic Alloy	Non-Fe	rrous Metal
Tooling	Plunging	Traverse Cut	Plunging	Traverse Cut	Plunging	Traverse Cut	Plunging	Traverse Cut	Plunging	Traverse Cut
Tool Grades	AC1030L T150	J/ACZ150 DOA	AC1030U/AC T150	530U/ACZ150 DOA	AC1030U/AC5 AC530U	015S/AC5025S /ACZ150	AC5 AC5	015S 025S	DL1	500
Cutting Speed vc (m/min)	50 to	o 150	50 to	o 150	50 to	o 150	20 t	o 80	150 to	o 300
Feed Rate f (mm/rev)	0.02 to 0.10	0.02 to 0.15	0.02 to 0.05	0.02 to 0.10	0.02 to 0.04	0.02 to 0.06	0.01 to 0.03	0.01 to 0.04	0.02 to 0.05	0.02 to 0.10

Refer to shank selection on P6 for applicable shank. Refer to P13 for applicable inserts.

*1 Cermet inserts have a recommended tightening torque of 4N·m.

Right-handed (part number suffix: -R3J) heads are used with right-handed (R) inserts.

*2 Wrenches are sold separately from heads.

Selecting GWC series Heads

Integrated Holder	Right-handed (R)	Left-handed (L)
APM series	Right-handed (R) No Offset	Right-handed (R) With Offset
APM series Shank	APM-ROO)	(84J (Common)
GWC series Head	APMOO-GWC R-R3J	APMOO-GWC R OOO -L3J
Applicable Insert	TGA R3000	TGA L3000
GWC series Head Mounted Appearance	Shank: Common Head: No Offset, Right-handed Insert: Right-handed	Shank: Common Head: With Offset, Right-handed Insert: Left-handed

Rake Angle When Mounted on the Head (α °)

Coated Carbide	Carbide	DLC	Coated Cermet	Cermet
AC5015S AC5025S AC530U	H1	DL1500	T2500Z	T1500A
10°	20°	10°	10°	5°

TGA R/L3250(E)

TGA R/L3265(E)

TGA R/L3270(E)

TGA R/L3280(E)

Rake Angle by Grade (Grooving)

Gra	ade	Cutting Edge Shape	GAN
Coated Carbide	AC5015S	Honing	15°
Coated Carbide	AC5025S	Honing	15°
Coated Carbide	AC530U	Honing	15°
Carbide	H1	Sharp Edged	25°
DLC	DL1500	Sharp Edged	25°
Coated Cermet	T2500Z	Honing	15°
Cermet	T1500A	Sharp Edged	10°

the head, refer to P12.

2.5 0.1^{*2} 9.525 3.18

2.65 2.5 0.1^{*2} 9.525 3.18

2.70 2.5 0.1^{*2} 9.525 3.18

2.80 2.5 0.1^{*2} 9.525 3.18

1

1

1

1

1

Figure shows right-handed (R) tool.

Insert (Grooving) (С	oate	ed Ca	rbid	e / [C	eme	enteo	d Cai	rbide	e /	D	LC /		Cerm	et)				Dimensions	(mm)
	AC5	015S	AC5	025S	AC5	30U	Н	1	DL1	500	T25	500Z	T15	00A	Width of Cut	Maximum Groove Depth	Corner Radius	Inscribed Circle	Thickness	Applicable	
Cat. No.*1	R	L	R	L	R	L	R	L	R	L	R	L	R	L	CW	CDX	RE	IC	S	Head	Fig
TGA R/L3033(E)															0.33	0.8	0.05	9.525	3.18		1
TGA R/L3043(E) 💯					0	0							0	0	0.43	0.8	0.05	9.525	3.18		1
TGA R/L3050(E)									0	0					0.50	1.2	0.05	9.525	3.18	1	1
TGA R/L3053(E) 💯					0	0							0	0	0.53	1.2	0.05	9.525	3.18		1
TGA R/L3065(E) 🔊					0	0							0	0	0.65	1.2	0.05	9.525	3.18		1
TGA R/L3075(E)									0	0					0.75	2.0	0.1*2	9.525	3.18	1	1
TGA R/L3080(E) 💯					0	0							0	0	0.80	2.0	0.1*2	9.525	3.18		1
TGA R/L3095(E)															0.95	2.0	0.1*2	9.525	3.18		1
TGA R/L3100(E)	0	0	0	0					0	0					1.00	2.0	0.1*2	9.525	3.18		1
TGA R/L3110(E)	0	0	0	0											1.10	2.0	0.1*2	9.525	3.18		1
TGA R/L3120(E) 💯					0	0							0	0	1.20	2.0	0.1*2	9.525	3.18		1
TGA R/L3125(E)	0	0	0	0					0	0					1.25	2.0	0.1*2	9.525	3.18		1
TGA R/L3130(E) 💯					0	0							0	0	1.30	2.0	0.1*2	9.525	3.18	APMOO-	1
TGA R/L3135(E)															1.35	2.0	0.1*2	9.525	3.18	GWCR-R3J	1
TGA R/L3140(E) 💯					0	0							0	0	1.40	2.0	0.1*2	9.525	3.18	APMOO-	1
TGA R/L3145(E)															1.45	2.0	0.1*2	9.525	3.18	GWCR…	1
TGA R/L3150(E)	0	0	0	0					0	0					1.50	2.0	0.1*2	9.525	3.18	-L3J	1
TGA R/L3160(E) 💯					0	0							0	0	1.60	2.0	0.1*2	9.525	3.18		1
TGA R/L3165(E)															1.65	2.0	0.1*2	9.525	3.18		1
TGA R/L3175(E)															1.75	2.0	0.1*2	9.525	3.18		1
TGA R/L3185(E)															1.85	2.0	0.1*2	9.525	3.18		1
TGA R/L3200(E)	0	0	0	0					0	0					2.00	2.5	0.1*2	9.525	3.18		1
TGA R/L3220(E)															2.20	2.5	0.1*2	9.525	3.18		1
TGA R/L3230(E)															2.30	2.5	0.1*2	9.525	3.18		1

2.50

•

O **3.00 2.5** 0.1^{*2} 9.525 3.18 Ο TGA R/L3300(E) 💯 0 Ο Ο Ο Ο Ο Ο Ο 1 Add E as the part number suffix for T1500A. Right-handed (R) inserts are used with right-handed (part number suffix: -R3J) heads. *2 T1500A is RE = 0.2

•

Recommended Cutting Conditions

Work Material	P	General Ste	el	M Stainl	ess Steel	S Exotic Alloy	Non-Fei	rous Metal
Tool Grades	AC530U	T2500Z	T1500A	AC5015S AC5025S	AC530U	AC5015S AC5025S	H1	DL1500
Cutting Speed vc (m/min)	50 to 200	100 to 180	100 to 180	50 to 200	50 to 200	20 to 80	up to 300	up to 300
Feed Rate f (mm/rev)	0.02 to 0.10	0.05 to 0.10	0.05 to 0.08	0.02 to 0.10	0.02 to 0.10	0.01 to 0.03	0.05	0.15

Insert (60°/55° Ge	60°/55° General Screw for Thread AC50155 AC50255 AC1030U DL15 at. No. R L			ding	g) (Coated Car	bide /	DL	_C /	Ce	erme	et)		Dimensions	; (mm)				
	AC5	015S	AC50	D25S	AC10)30U	DL1	500	T15	00A	Pitcl	ſ	Corner Radius	X Direction	Depth of Cut	Included Angle	Inscribed Circle	Thickness	Applicable	
Cat. No.	R	L	R	L	R	L	R	L	R	L	mm	Threads/Inch	RE	PDX	CDX	PNA	IC	S	Head	Fig
TTE R/L36002075	0	0	0	0	0	0	0	0	0	0	0.20 to 0.75	80 to 32	0.05	0.55	0.65	60	9.525	3.18	APMOO-	2
TTE R/L36005125	0	0	0	0	0	0	0	0	0	0	0.50 to 1.25	56 to 20	0.05	1.00	1.30	60	9.525	3.18	GWCR-R3J	2
TTE R/L3601015	0	0	0	0	0	0	0	0	0	0	1.00 to 1.50	24 to 16	0.10	1.30	1.80	60	9.525	3.18		2
TTE R/L3601530	0	0	0	0	0	0	0	0	0	0	1.50 to 3.00	16 to 8	0.20	1.70	2.40	60	9.525	3.18	APMOO-	2
TTE R/L3554816	0	0	0	0	0	0	0	0	0	0	—	48 to 16	0.05	1.00	1.50	55	9.525	3.18	GWCR…	2
TTE R/L3552008	0	0	0	0	0	0	0	0	0	0	_	20 to 8	0.10	1.50	2.40	55	9.525	3.18	-L3J	2
Distant laserated (D) inconstances		المركب ال	a set alla	I		(+			: г) Z I) -									

Right-handed (R) inserts are used with right-handed (part number suffix: -R3J) heads.

Refer to P15 for applicable inserts. Refer to P16 for head feed direction selection. * Wrenches are sold separately from heads.

The maximum groove depth CDX is the figure during grooving. For maximum depth of cut during traverse cutting and profiling, refer to P16.

Head

														0	
		Height	Head	Cutting Edge	Cutting Edge	Offset	Overall	Width of Cut	Maximum Groove				Flat Insert S	crew	Wrench
		_		Distance	neigni		Length		Depth	Max.	Annlicable		BFTX0412N		LT15-10
Cat. No.	Stock	н	LH	WF	HF	WF2	LF	CW	CDX	Cut-off	Size	Fig		N·m	
								_		Dia.					Ľ
													BX0515		LH040
APM10-GNDLR-1.2509J	O O	13.9	22	13.5	10	0	106	1.25	9.0	18	10	1			
APM10-GNDLR-1.509J	0	13.9	22	13.5	10	0	106	1.50	9.0	18	10	1			
APM10-GNDLR-209J	0	13.9	22	13.5	10	0	106	2.00	9.0	18	10	1			
APM10-GNDLR-309J	0	13.9	22	13.5	10	0	106	3.00	9.0	18	10	1	RETYOA12N	3.0	$1715_{-10}(*)$
APM10-GNDLR13.5-1.2509J	0	13.9	22	—	10	13.5	106	1.25	9.0	18	10	2	DI 1704121	3.0	
APM10-GNDLR13.5-1.509J	0	13.9	22	-	10	13.5	106	1.50	9.0	18	10	2			
APM10-GNDLR13.5-209J	0	13.9	22	—	10	13.5	106	2.00	9.0	18	10	2			
APM10-GNDLR13.5-309J	0	13.9	22	—	10	13.5	106	3.00	9.0	18	10	2			
APM12-GNDLR-1.2512J	0	17.9	28	16	12	0	112	1.25	12.0	24	12	1			
APM12-GNDLR-1.512J	0	17.9	28	16	12	0	112	1.50	12.0	24	12	1			
APM12-GNDLR-212.5J	0	17.9	28	16	12	0	112	2.00	12.5	25	12	1			
APM12-GNDLR-312.5J	0	17.9	28	16	12	0	112	3.00	12.5	25	12	1	DETVO442N		
APM12-GNDLR16-1.2512J	0	17.9	28	—	12	16	112	1.25	12.0	24	12	2	BFTX0412N	5.0	LI 15-10(^)
APM12-GNDLR16-1.512J	0	17.9	28	—	12	16	112	1.50	12.0	24	12	2			
APM12-GNDLR16-212.5J	0	17.9	28	—	12	16	112	2.00	12.5	25	12	2			
APM12-GNDLR16-312.5J	0	17.9	28	—	12	16	112	3.00	12.5	25	12	2			
APM16-GNDLR-1.2512.5J	0	21.9	33	20	16	0	117	1.25	12.5	25	16	1			
APM16-GNDLR-1.512.5J	0	21.9	33	20	16	0	117	1.50	12.5	25	16	1			
APM16-GNDLR-216J	0	21.9	33	20	16	0	117	2.00	16.0	32	16	1			
APM16-GNDLR-316J	Ō	21.9	33	20	16	0	117	3.00	16.0	32	16	1			
APM16-GNDLR20-1.2512.5J	0	21.9	33	-	16	20	117	1.25	12.5	25	16	2	BX0515	4.0	LHU40(*)
APM16-GNDLR20-1.512.5J	Ō	21.9	33	—	16	20	117	1.50	12.5	25	16	2			
APM16-GNDLR20-216J	0	21.9	33	_	16	20	117	2.00	16.0	32	16	2			
APM16-GNDLR20-316.J	Ó	21.9	33	—	16	20	117	3.00	16.0	32	16	2			
		2.12	20		.0	23	,	0.00			.0	-	1		1

Refer to shank selection on P6 for applicable shank. Select heads and inserts with matching width of cut CW. Refer to P15 for applicable inserts. Refer to P16 for head feed direction selection. * Wrenches are sold separately from heads. The maximum groove depth CDX is the figure during grooving. For maximum depth of cut during traverse cutting and profiling, refer to P16.

• mark: Standard stocked item O mark: Planned stock (around summer 2024) 🕅 Recommended Tightening Torque (N·m)

Inserts for GNDM-J type / GNDL-J type

(Coated Carbide / Cermet / Cemented Carbide / DLC)

Dimensions (mm)

Dimensions (mm)

Grooving / Traverse Cutting

Cat. No.	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	Width C Width of Cut	of Cut W Tolerance	Corner Radius RE	Overall Length	Thickness S	Pcs/Pack	Fig
GCM N3002-MG									—	3.0	±0.03	0.2	21.1	3.8	F	1
N3004-MG										3.0	±0.03	0.4	21.1	3.8	5	1
GCM N2002-ML	-		—	-					-	2.0	±0.03	0.2	21.1	3.6		1
GCM N3002-ML										3.0	±0.03	0.2	21.1	3.8	5	1
N3004-ML										3.0	±0.03	0.4	21.1	3.8		1

Grooving / Cut-off

Grooving / C	Cu	t-	ot	T.									Dir	nensi	ons (mm)
Cat. No.	C8025P	C8035P	C830P	C425K	C5015S	C5025S	C520U	C530U	2500A	Width C	of Cut W	Corner Radius	Overall Length	Thickness	s/Pack	Fig
	¥	¥	Þ	Ā	A	Ă	Ā	Ā	F	Width of Cut	Tolerance	RE	L	S	đ	
GCM N2002-GG									-	2.0	±0.03	0.2	21.1	3.6		1
GCM N3002-GG									-	3.0	±0.03	0.2	21.1	3.8	5	1
N3004-GG									-	3.0	±0.03	0.4	21.1	3.8		1
GCM N2002-GL									—	2.0	±0.03	0.2	21.1	3.6		1
N2004-GL									—	2.0	±0.03	0.4	21.1	3.6	E	1
GCM N3002-GL									—	3.0	±0.03	0.2	21.1	3.8	S	1
N3004-GL									-	3.0	±0.03	0.4	21.1	3.8		1
GCM N125005-GF	—	—	—	—	-	-	—		—	1.25	±0.03	0.05	17.4	3.2		1
GCM N150005-GF	-	—	—	—	-	-	—		—	1.5	±0.03	0.05	17.8	3.7		1
GCM N2002-GF	-	—	—	-						2.0	±0.03	0.2	21.1	3.6	F	1
N2004-GF	-	—	—	-						2.0	±0.03	0.4	21.1	3.6	5	1
GCM N3002-GF										3.0	±0.03	0.2	21.1	3.8		1
N3004-GF										3.0	±0.03	0.4	21.1	3.8		1

Cut-off (Handed Edge)

Cat. No.	8035F	C830P	50155	5025	:520U	530U	1030	Lead Angle	Width C	of Cut W	Corner Radius	Overall Length	Thickness	s/Pack	Fig
	AC	A	AC	AC	A	A	AC	PSI	Width of Cut	Tolerance	RE	L	S	ЪŬ	
GCM R2002-CG-05							-	5°	2.0	±0.03	0.2	21.1	3.6		2
GCM L2002-CG-05								5°	2.0	±0.03	0.2	21.1	3.6	5	2
GCM R3002-CG-05							-	5°	3.0	±0.03	0.2	21.3	3.8	5	2
GCM L3002-CG-05							-	5°	3.0	±0.03	0.2	21.3	3.8		2
GCM R20003-CF-10	-	-			—	-		10°	2.0	±0.08	0.03	22.4	3.6		2
GCM L20003-CF-10		-			—	-		10°	2.0	±0.08	0.03	22.4	3.6		2
GCM R30003-CF-10	-	-			-	-		10°	3.0	±0.08	0.03	22.4	3.8		2
GCM L30003-CF-10					-	-		10°	3.0	±0.08	0.03	22.4	3.8	F	2
GCM R20003-CF-15	-	-			—	-		15°	2.0	±0.08	0.03	22.4	3.6	С	2
GCM L20003-CF-15					-	-		15°	2.0	±0.08	0.03	22.4	3.6		2
GCM R30003-CF-15	-	-			—	-		15°	3.0	±0.08	0.03	22.4	3.8		2
GCM L30003-CF-15	-	-			-	-		15°	3.0	±0.08	0.03	22.4	3.8		2
CCMD, Diabt band	lod	CO	~ N /		of	+ 6		dad		·					

GCMR: Right-handed, GCML: Left-handed

External Profiling / External Radius Grooving Dimensions (mm)

Cat. No.	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	T2500A	Width C ' Widthof Cut	of Cut W Tolerance	Corner Radius RE	Overall Length	Thickness S	Pcs/Pack	Fig
GCM N3015-RG										3.0	± 0.03	1.5	21.1	3.8	5	3

Profiling / Radius Grooving / Necking Dimensions (mm)

Cat. No.	AC8025P	AC8035P	AC830P	AC425K	AC5015S	AC5025S	AC520U	AC530U	Width C' Widthof Cut	of Cut W Tolerance	Corner Radius RE	Overall Length	Thickness S	Pcs/Pack	Fig
GCM N2010-RN	—		—	—					2.0	±0.03	1.0	21.7	3.6	F	3
N3015-RN									3.0	±0.03	1.5	22.6	3.8	0	3

Non-Ferrous Metals

Non-Ferrous	5 1	1e	ta	ls						Dir	nensi	ons (mm)
Cat. No.	H10	DL1500					Width C ' Widthof Cut	of Cut W Tolerance	Corner Radius RE	Overall Length	Thickness S	Pcs/Pack	Fig
GCG N2002-GA		0					2.0	±0.025	0.2	21.1	3.6	5	4
N3002-GA	•	Ю					3.0	±0.025	0.2	21.1	3.8	5	4

Part Number Suffix Code (Chipbreakers)

		· · ·				
Туре	Symbol	Applications]	Туре	Symbo	Applications
Grooving /	MG	Multi-functional / General-purpose		Cut off (Handod Edga)	CG	Cut-off / General-purpose
Traverse Cutting	ML	Multi-functional / Low-feed		Cut-on (nanded Edge)	CF	Cut-off / Low cutting force
Creating /	GG	Grooving / General-purpose		External Profiling / External Radius Grooving	RG	Profiling / General-purpose
Grooving /	GL	Grooving / Low-feed		Profiling / Radius Grooving / Necking	RN	Facing / Necking / General-purpose
Cut-on	GF	Grooving / Low cutting force		For Non-Ferrous Metals	GA	Non-Ferrous Metals / General-purpose
				Chipbreaker Selectio	n 🎼 P1	Recommended Cutting Conditions 🕸 P16

Select heads and inserts with matching width of cut (CW).

GND series Head Lineup

MG CG	: Multi-fu : Cut-off	unction / Gene	al / Gene eral-purpo	ral-purj ose typ	pose type e	ML CF	Multi-functional / Low-fe Cut-off / Low cutting for	eed type GG rce type RG	I type GG : Grooving / General-purpose type GL : Grooving / Low-feed type type RC : Profiling / General-purpose type RN : Facing / Necking / General-purpose type									GF : Grooving / Low cutting force type GA : Non-Ferrous Metal / General-purpose type								
ype	Shanl (m	(Size m)	Widt	th o	f Cut ((mm)	Model		Max. Gr	roove D	epth ((mm)		Ref.	Applicable Chipbreakers											
	Height H	Width B	1.25 1.5	2 3	456	6 7 8		5	10	15	20	25	30	Page	MG	ML	GG	GL	GF	CG	CF	RG	RN	GA		
			1.25 1.5						9					P14					\odot							
	10	10		2			GNDL-J		9					P14		0	\odot	\bigcirc	\odot	\odot	\odot		\odot	\bigcirc		
S				3					9					P14	0	0	\bigcirc	\bigcirc	\odot	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc		
the			1.25 1.5				GNDL-J			12				P14					0							
La	12	12		2						12.5				P14		0	0	\odot	\odot	\odot	0		0	\odot		
<u>_</u>				3			GNDL-J			12.5				P14	0	0	\bigcirc	\odot	\odot	\odot	0	\bigcirc	0	\bigcirc		
E S			1.25 1.5				GNDL-J			12.5				P14					\odot							
2				2			GNDM-J			12.5				P14		0	0	\odot	\odot	\odot	0		0	\odot		
Ш	16	16		2			GNDL-J			11	6			P14		0	0	\odot	\odot	\odot	0		0	\odot		
				3			GNDM-J			12.5				P14	\bigcirc	0	0	0	\bigcirc	0	0	0	0	\bigcirc		
				3			GNDL-J			1	6			P14	0	0	0	0	\odot	\odot	0	0	0	\odot		
			: In	Stoc	:k															C): Be	st O	Suit	able		

GND series Head Recommended Cutting Conditions (Feed Rate / Depth of Cut)

Width of	Recommended C	utting Conditions	Corner	Applicable Insert
CUT (mm)	Grooving / Cut-off (Necking)	Traverse Cutting	(mm)	Applicable insert
1.25	GF 0.1 0.2 0.3 0.4 0.5 0.6 Feed Rate f (mm/rev)	_	0.05	MG ML GG GL GF CG CF RG RN GA
1.5	GF GF 0.1 0.2 0.3 0.4 0.5 0.6 Feed Rate f (mm/rev)	_	0.05	MG ML GG GL GF CG CF RG RN GA
2.0	ML GG GG GG GG GG GG GG GG GG GG GG GG GG	4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0.03 0.2 0.4 1.0	MG ML GG GL GF CG <mark>CF</mark> RG RN GA MG <mark>ML GG GL GF CG CF RG RN GA</mark> MG ML GG <mark>GL GF CG CF RG RN GA</mark> MG ML GG GL GF CG CF RG <mark>RN</mark> GA
3.0	High constraints of the second	Image: Weight of the second	0.03 0.2 0.4 1.5	MG ML GG GL GF CG CF RG RN GA MG ML GG GL GF CG CF RG RN GA MG ML GG GL GF CG CF RG RN GA MG ML GG GL GF CG CF <mark>RG RN</mark> GA

In cut-off applications, reduce the feed rate to around 30% to 50% near the centre of the workpiece.

GND series Head Recommended Cutting Conditions (Cutting Speed by Work Material)

Work Material	P (Carbon	Steel /	Alloy S	teel	M St	ainless	Steel		K Cas	st Iron	S Exot	ic Alloy	Non-Ferrous Metal	
Tool Grades	AC8025P	AC8035P AC830P	AC5015S AC520U	AC5025S AC530U AC1030U	T2500A	AC8035P AC830P	AC5015S AC520U	AC5025S AC530U AC1030U	AC8025P	AC425K	AC5015S AC520U	AC5025S AC530U AC1030U	AC5015S AC520U	AC5025S AC530U AC1030U	H10 DL1500
Cutting Speed vc (m/min)	80 to 250	80 to 200	80 to 200	50 to 200	50 to 200	70 to 150	70 to 150	50 to 150	80 to 200	80 to 200	60 to 200	50 to 200	20 to 80	20 to 60	150 to 300

Selecting GND series Heads

Integrated Holder	Right-handed (R)	Left-handed (L)
APM series	Right-handed (R) No Offset	Right-handed (R) With Offset
APM series Shank	APM-ROOX8	4J (Common)
GND series Head	APMOO-GND R-OOOOJ	
Applicable Insert	Com	imon
GND series Head Mounted Appearance	Shank: Common Head: No Offset, Right-handed Insert: Common	Shank: Common Head: With Offset, Right-handed Insert: Common

Chipbreaker Selection Guide for GND series Head Inserts

Grade Selection Guide for GND series Head Inserts

Applications	P Steel	M Stainless Steel	K Cast Iron	S Exotic Alloy	Non-Fer	rous Metal
us / High-speed	AC8025P CVD Surface Finish Emphasised	AC8035P (AC830P)	Ist Recommendation AC425K CVD	AC5015S		
 Continuo 	AC8035P (AC830P) Cermet	AC5015S	AC8025P	PVD		
		PVD Ist Recommendation	AC5015S	AC5025S (AC520U)	1st Recommendation DL1500	
Jnstable <	AC5025S (AC520U) PVD	AC5025S (AC520U) PVD	AC5025S (AC520U)	PVD		H10
Interrupted / I	Ist Recommendation AC530U/AC1030U PVD	AC530U AC1030U	AC530U AC1030U	AC530U AC1030U	PVD	Uncoated Carbide

Application Examples

Titanium Alloy Medical Component	Kovar Semiconductor Component
Machined surface quality equivalent to integrated type in vibration cutting of titanium alloy	Realises accuracy equivalent to integrated type in facing
	@l2mm
Shank: APM-R1212X84J Head: APM12-SDJCR11T3J	Shank: APM-R1212X84J Head: APM12-SCLCR09T3J
Insert: DCG I II I 302 Cutting Conditions: $v_{0} = 50 \text{m/min}$ f = 0.07mm/rov	Insert: $CUGI091301$
ap = 1.0mm Vibration Cutting Wet	ap = 0.5mm Wet

MEMO

 	 ,		 	 		 	 		 	 	 	 	 		 	 				
 	 		 : : :	 		 	 		 	 	 •••••	 	 		 	 				
 	 	• • • • •	 : : :			 			 	 	 	 	 	· · · · ·	 	 			• • • • •	
 	 		 			 	 		 	 	 •••••	 	 		 					
 	 		 	 		 	 		 	 	 · · · · · {	 	 		 	 				
 	 2		 	 		 	 		 	 	 	 	 		 	 				
 			 : :			 			 	 	· · · · · :	 	 	· · · · · :	 	 		:		
 	 ••••					 	 		 	 	 	 	 		 	 				
 	•••••		 · · · · ·			 		•••••	 	 	 •••••	 	 	· · · · · · · ·	 					
 	 •••••		 · · · · · ·			 			 		 	 	 	· · · · · · ·	 					
			· · · · · · · · · · · · · · · · · · ·									 								
 	 		 ; ;	 		 	 		 	 	 	 	 		 	 				
 			 :			 			 	 	 	 	 	· · · · ·	 					
 	 • • • • •		 ;	 		 	 		 	 	 ••••	 	 	· · · · · :	 	 				
 	 •••••					 	 		 ••••	 	 •••••	 	 	· · · · · ; ;	 		•••••			
	 		 								•••••	 	 	•••••	 					
 	 		 : 	 		 	 		 	 	 	 	 		 	 				
 	 · · · · · · ·		 	 		 	 		 	 	 	 	 		 	 				
 	 •••••		 			 	 		 	 	 	 	 	· · · · · ; ;	 					
 	•••••	••••	 · · · · ·			 	 		 ••••	 	 •••••	 	 	· · · · · ·	 					
 	 ,		 	 	,	 	 		 		 	 	 		 	 				
 	 		 	 		 	 		 	 	 ;	 	 		 	 				
			 :									 	 							

• Very hot or lengthy chips may be discharged while the machine is in operation. Therefore, machine guards, safety goggles or other protective covers must be used. Fire safety precautions must also be considered. • Please handle with care as this product has sharp edges. • More using non-water soluble cutting oil, precautions against fire must be taken and use the tool within its recommended conditions. • Very hot or lengthy chips may be discharged while the matrix of the tool within its recommended conditions.

< SAFETY NOTES >-

Sumitomo Electric Industries, Ltd.

Hardmetal Division

Global Marketing Department : 1-1-1, Koyakita, Itami, Hyogo 664-0016, Japan

https://www.sumitool.com/global